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Abstract 

In the last decades, predictive coding has emerged as an important framework for 
understanding how the brain processes information. It states that the brain is constantly inferring 
and predicting sensory data from statistical regularities in its environment. While this framework 
has been largely applied to sensory processing and motor control, we argue here that it could 
also serve as framework for a better understanding of how animals regulate nutrient 
homeostasis. Mechanisms that underlie nutrient homeostasis are commonly described in terms 
of negative feedback control, which compares current states with a reference point, called 
setpoint, and counteracts any mismatches. Using concepts from control theory, we explain 
shortcomings of negative feedback as a purely reactive controller, and how feed-forward 
mechanisms could be incorporated into feedback control to improve the performance of the 
control system. We then provide numerous examples to show that many insects, as well as 
mammals, make use of feed-forward, anticipatory mechanisms that go beyond the prevailing 
view of homeostasis being achieved through reactive negative feedback. The emerging picture 
is that the brain incorporates predictive signals as well as negative feedback to regulate nutrient 
homeostasis. 
 

Highlights 

● A powerful hypothesis in neuroscience posits that the brain is a predictive system  
● Nutrient homeostasis is typically described in terms of negative feedback 
● Control theory explains how feed-forward mechanisms can support feedback control 
● Many insects, like mammals, employ feed-forward mechanisms for nutrient homeostasis  

 
Introduction  
 
Nutrients have profound effects on the fitness of animals. Insects use a fascinating repertoire of 
behaviors to ensure nutrient homeostasis. Assassin bugs inject lethal saliva to liquefy their 
nutritious prey; ants organize in complex societies to acquire, distribute and even produce food; 
and female mosquitoes will undergo a dangerous maneuver to extract precious proteins from 
overwhelmingly powerful hosts. 
 
While consuming sufficient nutrients is essential to survival, excessive intake of nutrients such 
as carbohydrates and protein can have severe negative consequences on life history traits [1–
7]. Animals have therefore evolved sophisticated mechanisms to regulate the intake of specific 
nutrients [8–11]. These behavioral mechanisms are just one part of the complex interplay of 
processes that ensure relative constancy in the nutritional milieu intérieur; the processes 
conceptualized by Walter Cannon as homeostasis [12]. Despite Cannon’s more comprehensive 
view on the regulatory mechanisms underlying homeostasis [13], the physiological and neuronal 
circuit mechanisms that regulate nutrient intake are nowadays often viewed as negative 
feedback processes: the regulatory system is thought to measure the deviation of levels of a 
nutrient from a hypothetical setpoint (the required amount of nutrients). Any deviation from this 
setpoint will trigger a compensatory response that alters intake of the nutrient in order to revert 
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to the setpoint value. This control system is an important part of the regulation of feeding 
behavior, and has been extremely successful in advancing our understanding of the 
mechanisms that implement homeostasis [14–16]. However, it fails to explain many important 
aspects of nutritional homeostasis. One of the major drawbacks of such reactive feedback 
systems is that the animal must experience the lack of a nutrient, and all its negative 
consequences, before the homeostatic response is triggered. 
 
We would like to argue that, while intuitive and widely employed, this reactive system is only a 
part of the regulatory framework underlying nutritional homeostasis. From a control-theoretic 
view, it would be hugely advantageous for biological systems to predict future changes in 
internal nutrient levels and external nutrient availability. Such prediction allows for homeostatic 
responses to prevent deviations before the system incurs the costs of a nutritional shortfall. We 
will discuss anticipatory homeostasis from a control theory perspective, present examples for 
such anticipatory homeostatic responses in nutrient regulation, discuss circuit and molecular 
mechanisms underlying anticipatory responses in the context of reproduction, and present 
evidence for the wide use of such predictive homeostatic responses. It should become clear that 
predictive homeostasis is likely to be the norm and not the exception. As such, the 
implementation of predictive regulatory frameworks leads to an overarching understanding of 
biological regulation ranging from predictive sensory coding in the brain to predictive gene 
regulation at the cellular level. 
 
Reaction and prediction  
 
Groundbreaking work over the last few decades has shed light on numerous mechanisms 
underlying nutrient homeostasis [14–18]. In general, these mechanisms implement reactive 
homeostasis in the form of negative feedback control, using deviation of a nutritional variable 
from a hypothetical setpoint value to trigger counter-regulatory responses (Figure 1a). Control 
theory is an interdisciplinary branch of engineering and mathematics that studies the 
mathematical formalization of controlling dynamical systems to achieve a desired or optimal 
behavior [19]. Mathematically, achieving this goal requires stability, controllability and 
observability of states. One of the key concepts of control theory is feedback, which closes the 
causal link by feeding back outputs of the control process as inputs into the process. 
Advantages of feedback control are stability and robustness, because it ensures stable 
convergence towards a given setpoint against unexpected perturbations. Furthermore, it can be 
easily implemented, as it does not require prior knowledge about the control system or how 
changes in output will affect the variable of interest. 
 
However, feedback control has significant limitations. First, it is reactive, and as such, can only 
respond to perturbations that have already occurred, even if these are detrimental to the 
controlled system. Thus, in the context of nutrition, the animal must experience a lack of 
nutrients, which can be detrimental to physiological systems, before mounting a regulatory 
response. Second, its responses are critically sensitive to the gain used for regulation [19]. 
While a high gain leads to fast responses by the controller, it also renders the controller highly 
susceptible to sensory noise. Third, the time it takes for the controller to affect a response in the 
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controlled variable provides an additional delay that could exacerbate the error [20]. For 
example, appropriate food may not be immediately available, and foraging in a time of need 
uses up precious time and resources. Taken together, there is a speed-accuracy tradeoff in how 
rapidly a feedback controller can compensate for errors in the controlled variable. In order to 
overcome these limitations of pure feedback control, control systems are often complemented 
by feed-forward mechanisms that are able to model and predict future states of the controlled 
variable [13]. 
 
The temporal dynamics of external and internal environments, although complex and irregular, 
are deterministic and predictable. As such, a controller that can adapt through learning or 
evolution to recognize such correlative patterns, and use predictive sensory cues to drive 
regulation in anticipation of future perturbations, would have significant advantages compared to 
a purely reactive controller. In particular, using signals that are strongly correlated with time-
delayed perturbations of the controlled variable would further increase fitness in the face of 
environmental and sensory uncertainty. Predictive signals could be integrated at different levels 
of the control system, for example by directly modulating the setpoint to which negative 
feedback operates, or by providing an additional input to the feedback controller (Figure 1b) 
[13]. Another possibility is the use of so-called internal models of future states, i.e., forward 
models, which have largely been discussed in the context of motor control [21]. Indeed, 
evidence for internal models and predictive control has recently been found in prey pursuit of 
dragonflies [22]. Such a feed-forward mechanism does not operate in isolation, but is integrated 
into a feedback control system by summation of predictive feed-forward and error-based 
feedback terms (Figure 1c). Given these advantages, we could expect that such feed-forward 
signals would be integrated with feedback mechanisms to achieve nutrient homeostasis across 
species. 
 
Food for the next generation  
 
Animals’ nutritional needs are not constant across their lifespan, but change across different 
timescales depending on changes in physiology. Many of these changes in needs are 
predictable, and therefore animals can use physiological signals to predict changes in nutritional 
needs and mount an anticipatory behavioral response (feeding). For example, production of 
eggs requires a significant investment of nutrients only during periods of reproductive activity. If 
an animal were to use a purely reactive homeostatic system, production of eggs would lead to a 
reduction in nutritional reserves, which would trigger a compensatory behavioral response. A 
pure feedback system would require that the animal experiences a nutritional deficit in order to 
mount a behavioral response. However, since egg production is tightly coupled to nutrient 
availability in many insect species [23–25], this system would be sub-optimal because it would 
lead to periodic reductions in the rate of egg production as nutrient stores are reduced (Figure 
2a). Rather, since reproduction is triggered by specific physiological signals, females could use 
these signals to alter nutrient intake in anticipation of their needs, and thus maintain sufficient 
nutrient levels to support a high rate of egg production (Figure 2b). 
 
In Drosophila melanogaster [26,27], as in many insect species [28–33], virgin females produce 
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eggs at a low rate, and mating leads to a drastic increase in egg production. This increase in 
egg production is driven largely by male seminal fluid proteins (SFPs), which are transferred to 
the female during copulation [26]; in D. melanogaster, the major stimulator of egg production is 
Sex Peptide [34,35]. This high rate of egg production requires an investment of specific 
nutritional resources: dietary protein/amino acids are necessary for egg production [3,36], while 
increasing dietary sodium correlates with increasing egg production rates [10]. In order to 
ensure the intake of these nutrients, flies increase their intake of yeast [11,37,38] /amino acids 
[39] and sodium [10] after mating. 
These nutrient-specific appetites are not driven by a deficit induced by the use of nutrients for 
egg production, since genetic manipulations that prevent egg production leave these appetites 
intact [10,37]. Rather, the same signal that induces egg production, Sex Peptide, acts as a 
predictive signal that induces appetites for the nutrients required for egg production. At the 
circuit level this feed-forward regulation is implemented by Sex Peptide silencing the activity of a 
small group of neurons in the reproductive tract, and consequently their postsynaptic partners, 
which send the signal to the brain [40–43]. As a result, this silencing induces appetites for both 
yeast and salt, as well as stimulating egg laying (Figure 3). This anticipatory regulation means 
that the female does not have to experience a drop in egg production capacity in order to initiate 
the necessary nutritional responses (Figure 2b). It also ensures that virgin females do not suffer 
the costly consequences of excessive protein intake, maximizing their lifespan and thus their 
opportunity to find a mate. Importantly, mated females still show nutrient-controlled feedback 
regulation of appetite, since amino acid deprivation increases yeast appetite [11,37]. This 
highlights the integration of feedback and feed-forward systems to ensure homeostasis. 
 
Another, more extreme version of this anticipatory regulation of feeding behavior by 
reproduction is seen in ixodid ticks [44]. Females of these species feed on around 200-300 
times their initial body weight in host blood, the vast majority of this engorgement happening 
only after mating has occurred. In these species, vitellogenesis and egg maturation occur only 
after the engorgement phase, indicating that blood feeding is not driven by a nutritional deficit 
induced by egg production. Rather, the effect of mating on blood feeding is driven by a pair of 
SFPs, voraxin alpha and beta. This coupling with mating state is important because females 
mate when attached to the host, and a fully engorged virgin female would be unable to reattach 
to the host, and thus mate, if it lost attachment. 
 
 
Prediction beyond reproduction  
 
Anticipatory regulation of feeding behavior is widespread beyond reproduction. Circadian 
variation in feeding behavior may reflect anticipation of nutritional demands across the day [45]. 
In mice, for example, activity of vasopressin neurons in the SCN drives drinking before the sleep 
period in anticipation of water loss during sleep [46]. As well as predicting internal nutritional 
needs, animals, including bees, can use circadian cues to anticipate external nutrient availability 
at specific locations [47]. Animals can also anticipate seasonal variations in nutrient availability 
or requirements. Female Culex pipiens undergo a switch from blood feeding to sugar gluttony in 
anticipation of diapause, when protein requirements for egg production are reduced and sugars 
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are required to survive, and this switch drastically increases survival [48,49]. Likewise, larvae of 
Sarcophaga crassipalpis accumulate large reserves of lipid and protein in anticipation of 
nutritional needs during diapause [50]. What is more, the nervous system anticipates not only 
future changes in physiological requirements, but also the future effects of consumption on 
physiology: in vertebrates the activity of neurons controlling hunger, thirst and diuresis is 
modulated by sensory cues in anticipation of the physiological consequences of eating and 
drinking [51–56]. Whether such rapid modulation of hunger and thirst neurons also occurs in 
invertebrates, however, is unknown. Such modulation could occur at the level of recently-
described neurons in the Drosophila brain that regulate thirst, feeding and protein appetite [57–
61]. Indeed, pre-activation of the latter two neurons has been shown to drive persistent appetite 
even after their activation is terminated [60,61], much like AgRP-expressing neurons in the 
mammalian arcuate nucleus [62], suggesting they may fulfil a similar functional role. An 
indication that sensory input can directly alter central processes in insects could be deduced 
from the well-documented direct effect of chemosensory input on aging and physiology [63–66]. 
Such direct reprogramming of the physiology of the animal by taste and odors is likely to be an 
anticipatory adaptation to the imminently following food ingestion. 
 
In several insect species, regulation of nutrient intake is thought to be mediated to a large extent 
by modulation of behavioral responses to specific chemosensory stimuli [67–69]. Indeed, 
deprivation from specific nutrients has been shown to modify the responsiveness of specific 
chemosensory receptor neurons in both flies [70] and locusts [67,71], suggesting an elegant 
neuronal implementation of negative feedback control. Whether predictive mechanisms 
generally act through modulation of chemosensory responses is unclear. In the case of salt 
intake, its stimulation by mating is due at least in part to a modulation of salt taste 
responsiveness [10]. To understand predictive homeostasis, it will be important to identify at 
which circuit nodes the response to food is modulated by predictive signals. 
 
Prediction beyond nutrition  
 
Anticipation of physiological states is not limited to the regulation of nutrition. In the vertebrate 
cardiovascular system, feed-forward signals drive changes that provide blood supply in 
proportion to muscular output, even in the absence of afferent feedback; and anticipatory 
mechanisms adjust the properties of negative feedback control depending on circadian signals 
and behavioral state [72]. In fact, predictive homeostasis is not exclusive to the nervous system, 
or even to multicellular organisms: many microbes optimize their physiology to future conditions 
using “adaptive prediction”. For example, since transitions from one part of an animal host to 
another involve predictable changes in external conditions (eg. pH, mineral abundance), gut 
microbes can use current conditions to predict future conditions, and alter gene expression in 
such a way as to optimize future fitness [73]. Microbes also show circadian variation in gene 
expression that anticipates nutritional needs [74]. Thus, predictive homeostasis is widespread 
throughout biological control systems, providing an essential complement to feedback control 
that increases fitness by preventing deviations from optimal conditions before they occur. 
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Conclusion  
 
The central idea of the brain as a predictive system dates back to Helmholtz [75], who 
postulated that the brain constantly generates sensory data to match incoming stimuli with 
internal models of the environment and our bodies. While it has been shown that the brain can 
infer the statistical structure of the external environment [76–78] and predict sensory 
consequences from chosen motor actions [79,80], we have outlined here how animals also 
predict their internal nutritional states, and use these predictions to guide feeding decisions. The 
emerging picture is that insects and mammals employ feed-forward, anticipatory mechanisms 
that go beyond the current view of homeostasis being achieved through reactive negative 
feedback. A mechanistic understanding of how the brain controls nutrition must therefore take 
into account feed-forward regulation. Interestingly, feed-forward regulation is an integral part of 
some neuroscience models of human decision-making that are based on homeostatic 
frameworks [81–83]. Therefore understanding the biological implementation of predictive 
homeostasis might also provide insights into cognition across phyla. 
 
A deeper understanding of how predictive systems aid homeostasis requires answering some 
key questions: How are these predictive mechanisms implemented at a cellular and molecular 
level? How are anticipatory signals integrated into neural circuits that implement negative 
feedback control of feeding? And, more speculatively, how are these anticipatory signals 
integrated into control systems on evolutionary timescales [84]? Ultimately, elucidating feed-
forward mechanisms guiding homeostasis will require quantitative analysis and description of 
behavior, circuit dynamics and organismal physiology, using insights from theoretical 
frameworks, such as optimal control [85] and active inference [83,86]. These questions will 
provide plentiful fruit for future understanding of how Bernard’s milieu interior is maintained by 
the harmonious interactions of myriad parts. 
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Figure legends 

 
Figure 1: Examples of control-theoretic models for achieving nutrient regulation. 

A) In negative feedback control, the control system measures the controlled variable and 
subtracts (hence negative) it from a setpoint. Any deviation from the setpoint (or 
feedback error) leads to a control output that regulates the behavior of the system to 
revert the controlled variable to the setpoint value. In most systems, controlled variables 
do not respond instantaneously to a change in output but with a certain delay due to the 
response dynamics of the system. 

B) Predictive stimuli which correlate with future changes in the controlled variable could be 
used to change the setpoint, the feedback error, or the controller in order to improve the 
performance of negative feedback control by reducing (ideally avoiding) the occurrence 
of an error signal. 

C) A forward model allows for predicting future states of the controlled variable based on 
predictive stimuli. Importantly, such a feed-forward mechanism does not work on its own, 
but the controller combines predictive feed-forward and error-based feedback terms by 
summation. 

 
Figure 2: Advantages of using additional feed-forwa rd mechanisms over purely reactive 
feedback control to maximize nutrient availability for egg production upon mating. 

A) In a purely reactive controller based on negative feedback, nutrient-specific intake is 
controlled by the deviations of the internal nutrient levels from a given setpoint. For 
example, upon mating Sex Peptide stimulates female egg production, which requires 
proteins and sodium, and therefore would lead to a reduction in internal amino acid 
(AA)/sodium levels. The behavioral changes induced by this deviation from the setpoint 
would lead to an increase in yeast/salt appetite only after a delay. As a result, the fly 
would experience a reduction in internal AA/sodium levels, and consequently a reduction 
in egg production. AA/sodium levels only recover once feeding is initiated and nutrients 
are absorbed. While the relationship between egg production, yeast/salt intake and 
internal AA/sodium levels depends on the exact dynamics of the system, these periodic 
reductions in the egg production rate would significantly decrease the fitness of the 
animal. 

B) In a homeostatic system incorporating feed-forward regulation, Sex Peptide (SP) serves 
as a predictive signal for a subsequent increase in egg production, and thus an increase 
in AA/sodium turnover. Therefore, it is employed to induce an anticipatory increase in 
yeast/salt feeding. This anticipatory response supports the increased needs for 
subsequent egg production. Consequently, no significant deviations of the AA/sodium 
levels occur, which supports a constant high egg production rate.  

 
Figure 3: Sex Peptide stimulates both egg productio n and anticipatory appetites 
necessary to support reproduction through a common SPSN-SAG neuronal circuit. 
In virgin females (left), Sex Peptide Sensory Neurons (SPSNs) are tonically active, and excite 
postsynaptic ascending neurons (SAGs) that suppress egg laying and salt/yeast appetites. 
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Following mating (right), Sex Peptide binding to its receptor in SPSNs silences their activity, 
releasing this inhibition of egg laying and concomitantly driving the anticipatory appetites for salt 
and yeast that support a constant high rate of egg production. 
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